References

Designing Lightweight AI Agents for Edge Deployment

A Minimal Capability Framework with Insights from Literature Synthesis

References

References

Alayrac, J. B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., ... & Simonyan, K. (2022). Flamingo: A visual language model for few-shot learning. Advances in Neural Information Processing Systems, 35, 23716-23736. https://arxiv.org/abs/2204.14198

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete problems in AI safety. arXiv preprint arXiv:1606.06565. https://arxiv.org/abs/1606.06565

Anthropic. (2024). Model context protocol. Anthropic Documentation. https://docs.anthropic.com/en/docs/build-with-claude/mcp

Banbury, C. R., Reddi, V. J., Lam, M., Fu, W., Fazel, A., Holleman, J., ... & Warden, P. (2021). Benchmarking TinyML systems: Challenges and direction. Proceedings of Machine Learning and Systems, 3, 367-378. https://arxiv.org/abs/2003.04821

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). The goal question metric approach. Encyclopedia of Software Engineering, 2, 528-532. https://doi.org/10.1002/0471028959.sof142

Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The long-document transformer. arXiv preprint arXiv:2004.05150. https://arxiv.org/abs/2004.05150

Berg, M. (2001). Implementing information systems in health care organizations: Myths and challenges. International Journal of Medical Informatics, 64(2-3), 143-156. https://doi.org/10.1016/S1386-5056(01)00200-3

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... & Liang, P. (2021). On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258. https://arxiv.org/abs/2108.07258

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901. https://arxiv.org/abs/2005.14165

Campbell, D. T., & Stanley, J. C. (1963). Experimental and quasi-experimental designs for research. Houghton Mifflin.

Chase, H. (2022). LangChain. GitHub Repository. https://github.com/langchain-ai/langchain

Chen, L., Chen, J., Goldstein, T., Huang, H., & Zhou, T. (2023). InstructZero: Efficient instruction optimization for black-box large language models. arXiv preprint arXiv:2306.03082. https://arxiv.org/abs/2306.03082

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. Proceedings of the 37th International Conference on Machine Learning, 1597-1607. https://arxiv.org/abs/2002.05709

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage Publications.

Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2022). QLoRA: Efficient finetuning of quantized LLMs. arXiv preprint arXiv:2305.14314. https://arxiv.org/abs/2305.14314

Dinan, E., Roller, S., Shuster, K., Fan, A., Auli, M., & Weston, J. (2020). Wizard of wikipedia: Knowledge-powered conversational agents. arXiv preprint arXiv:1811.01241. https://arxiv.org/abs/1811.01241

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., ... & Sui, Z. (2022). A survey for in-context learning. arXiv preprint arXiv:2301.00234. https://arxiv.org/abs/2301.00234

Frantar, E., Ashkboos, S., Hoefler, T., & Alistarh, D. (2023). GPTQ: Accurate post-training quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323. https://arxiv.org/abs/2210.17323

Gou, J., Yu, B., Maybank, S. J., & Tao, D. (2021). Knowledge distillation: A survey. International Journal of Computer Vision, 129(6), 1789-1819. https://doi.org/10.1007/s11263-021-01453-z

Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for maximum impact. MIS Quarterly, 37(2), 337-355. https://doi.org/10.25300/MISQ/2013/37.2.01

Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., ... & Bastien, J. F. (2017). Bringing the web up to speed with WebAssembly. ACM SIGPLAN Notices, 52(6), 185-200. https://doi.org/10.1145/3062341.3062363

Han, S., Pool, J., Tran, J., & Dally, W. (2016). Learning both weights and connections for efficient neural network. Advances in Neural Information Processing Systems, 28, 1135-1143. https://arxiv.org/abs/1506.02626

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75-105. https://doi.org/10.2307/25148625

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531. https://arxiv.org/abs/1503.02531

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. https://arxiv.org/abs/1704.04861

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2021). LoRA: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685. https://arxiv.org/abs/2106.09685

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. arXiv preprint arXiv:1602.07360. https://arxiv.org/abs/1602.07360

Izacard, G., & Grave, E. (2021). Leveraging passage retrieval with generative models for open domain question answering. Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, 874-880. https://arxiv.org/abs/2007.01282

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., ... & Kalenichenko, D. (2018). Quantization and training of neural networks for efficient integer-arithmetic-only inference. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2704-2713. https://arxiv.org/abs/1712.05877

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. https://doi.org/10.1038/s42256-019-0088-2

Kadavath, S., Conerly, T., Askell, A., Henighan, T., Drain, D., Perez, E., ... & Amodei, D. (2022). Language models (mostly) know what they know. arXiv preprint arXiv:2207.05221. https://arxiv.org/abs/2207.05221

Raghubir Singh, Sukhpal Singh Gill (2023). Edge AI: A survey. ACM Computing Surveys, Volume 3, Pages 71-92, ISSN 2667-3452, . https://doi.org/10.1016/j.iotcps.2023.02.004

Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov, S., ... & Yih, W. T. (2020). Dense passage retrieval for open-domain question answering. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 6769-6781. https://arxiv.org/abs/2004.04906

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical Report, EBSE-2007-01. https://doi.org/10.1145/1134285.1134500

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large language models are zero-shot reasoners. Advances in Neural Information Processing Systems, 35, 22199-22213. https://arxiv.org/abs/2205.11916

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Kiela, D. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33, 9459-9474. https://arxiv.org/abs/2005.11401

Lin, S., Hilton, J., & Evans, O. (2022). TruthfulQA: Measuring how models mimic human falsehoods. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 3214-3252. https://arxiv.org/abs/2109.07958

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023). Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Computing Surveys, 55(9), 1-35. https://doi.org/10.1145/3560815

Mialon, G., Dessì, R., Lomeli, M., Nalmpantis, C., Pasunuru, R., Raileanu, R., ... & Scialom, T. (2023). Augmented language models: a survey. arXiv preprint arXiv:2302.07842. https://arxiv.org/abs/2302.07842

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., & Zettlemoyer, L. (2022). Rethinking the role of demonstrations: What makes in-context learning work? arXiv preprint arXiv:2202.12837. https://arxiv.org/abs/2202.12837

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko, Y., van Baalen, M., & Blankevoort, T. (2021). A white paper on neural network quantization. arXiv preprint arXiv:2106.08295. https://arxiv.org/abs/2106.08295

Nakajima, Y. (2023). BabyAGI. GitHub Repository. https://github.com/yoheinakajima/babyagi

NVIDIA. (2020). Jetson Nano Developer Kit documentation. NVIDIA. https://developer.nvidia.com/embedded/jetson-nano-developer-kit

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., ... & Sutton, C. (2021). Show your work: Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114. https://arxiv.org/abs/2112.00114

OpenAI. (2023). GPT-4 technical report. arXiv preprint arXiv:2303.08774. https://arxiv.org/abs/2303.08774

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., ... & Lowe, R. (2022). Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35, 27730-27744. https://arxiv.org/abs/2203.02155

Park, J. S., O'Brien, J. C., Cai, C. J., Morris, M. R., Liang, P., & Bernstein, M. S. (2023). Generative agents: Interactive simulacra of human behavior. Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, 1-22. https://arxiv.org/abs/2304.03442

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45-77. https://doi.org/10.2753/MIS0742-1222240302

Perez, E., Kiela, D., & Cho, K. (2021). True few-shot learning with language models. Advances in Neural Information Processing Systems, 34, 11054-11070. https://arxiv.org/abs/2105.11447

Press, O., Zhang, M., Min, S., Schmidt, L., Smith, N. A., & Lewis, M. (2022). Measuring and narrowing the compositionality gap in language models. arXiv preprint arXiv:2210.03350. https://arxiv.org/abs/2210.03350

Qin, Y., Liang, S., Ye, Y., Zhu, K., Yan, L., Lu, Y., ... & Sun, M. (2023). ToolLLM: Facilitating large language models to master 16000+ real-world APIs. arXiv preprint arXiv:2307.16789. https://arxiv.org/abs/2307.16789

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021). Learning transferable visual models from natural language supervision. Proceedings of the 38th International Conference on Machine Learning, 8748-8763. https://arxiv.org/abs/2103.00020

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?" Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135-1144. https://doi.org/10.1145/2939672.2939778

Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., & Chadha, A. (2024). A systematic survey of prompt engineering in large language models: Techniques and applications. arXiv preprint arXiv:2402.07927. https://arxiv.org/abs/2402.07927

Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., ... & Scialom, T. (2023). Toolformer: Language models can teach themselves to use tools. arXiv preprint arXiv:2302.04761. https://arxiv.org/abs/2302.04761

Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green AI. Communications of the ACM, 63(12), 54-63. https://doi.org/10.1145/3381831

Selbst, A. D., Boyd, D., Friedler, S. A., Venkatasubramanian, S., & Vertesi, J. (2019). Fairness and abstraction in sociotechnical systems. Proceedings of the Conference on Fairness, Accountability, and Transparency, 59-68. https://doi.org/10.1145/3287560.3287598

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., & Yao, S. (2023). ReAct: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629. https://arxiv.org/abs/2210.03629

Shuster, K., Poff, S., Chen, M., Kiela, D., & Weston, J. (2022). Retrieval augmentation reduces hallucination in conversation. arXiv preprint arXiv:2104.07567. https://arxiv.org/abs/2104.07567

Tay, Y., Dehghani, M., Rao, J., Fedus, W., Abnar, S., Chung, H. W., ... & Metzler, D. (2022). Scale efficiently: Insights from pretraining and finetuning transformers. arXiv preprint arXiv:2109.10686. https://arxiv.org/abs/2109.10686

Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. American Journal of Evaluation, 27(2), 237-246. https://doi.org/10.1177/1098214005283748

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H. T., ... & Le, Q. (2022). LaMDA: Language models for dialog applications. arXiv preprint arXiv:2201.08239. https://arxiv.org/abs/2201.08239

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998-6008. https://arxiv.org/abs/1706.03762

Warden, P., & Situnayake, D. (2019). TinyML: Machine learning with TensorFlow Lite on Arduino and ultra-low-power microcontrollers. O'Reilly Media.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q., & Zhou, D. (2022). Chain of thought prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems, 35, 24824-24837. https://arxiv.org/abs/2201.11903

Zafrir, O., Boudoukh, G., Izsak, P., & Wasserblat, M. (2019). Q8BERT: Quantized 8bit BERT. arXiv preprint arXiv:1910.06188. https://arxiv.org/abs/1910.06188

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., ... & Zettlemoyer, L. (2024). OPT: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068. https://arxiv.org/abs/2205.01068

Zhang, Z., Zhang, A., Li, M., & Smola, A. (2022). Automatic chain of thought prompting in large language models. arXiv preprint arXiv:2210.03493. https://arxiv.org/abs/2210.03493

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X., ... & Chi, E. (2022). Least-to-most prompting enables complex reasoning in large language models. arXiv preprint arXiv:2205.10625. https://arxiv.org/abs/2205.10625

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., & Ba, J. (2023). Large language models are human-level prompt engineers. arXiv preprint arXiv:2211.01910. https://arxiv.org/abs/2211.01910


Topics